Strategie, Taktik, Ausführung – die Netzwerke der Bewegungskontrolle
Egal ob wir einen Ball werfen, einen Baum erklimmen oder eine Arie singen: Jede willkürliche Bewegung unseres Körpers beginnt im Gehirn. Ein Netzwerk aus verschiedenen Hirnarealen mit unterschiedlichen Spezialfunktionen plant und organisiert im Zusammenspiel jede Regung.
Wissenschaftliche Betreuung: Prof. Dr. Hansjörg Scherberger
Veröffentlicht: 31.08.2011
Niveau: mittel
- Die Bewegungen des Menschen werden von einem Netzwerk verschiedener Hirnareale gesteuert und kontrolliert.
- Daran beteiligt sind weite Teile der Hirnrinde und des Hirnstamms, sowie das Kleinhirn und das Rückenmark.
- Die zum motorischen System gehörenden Hirnregionen besitzen unterschiedliche Aufgabenbereiche und Spezialfunktionen – von der Festlegung der Bewegungsstrategie über die konkrete Planung der Bewegung bis hin zu deren Ausführung.
Es ist früh am Morgen, der Wecker klingelt. Schlaftrunken zuckt man zusammen, blinzelt mit den Augenlidern, tastet nach dem Ruhestörer und macht den Alarmton aus. Dann ein Recken, ein Räkeln, Decke zurückschlagen, Beine über die Bettkante geschwungen – und wieder beginnt ein Tag, an dem wir uns ohne Unterbrechung bewegen. Denn selbst wenn man relativ ruhig vor dem Computer sitzt: Der Körper ist immer in Aktion. Die Augen wandern über den Bildschirm, die mimischen Muskeln runzeln kurz die Stirn, Finger eilen über die Tastatur, dazwischen ein nachdenkliches Kratzen am Ohr. Kurz: Die motorischen Fähigkeiten sind für die menschliche Existenz von besonderer Bedeutung.
Wechselspiel von Aktion und Reaktion
Wie wichtig die Motorik ist, zeigt sich auch beim Blick ins zentrale Nervensystem und auf die dahinter stehende Neurobiologie. So sind neben Bereichen von Hirnstamm und Rückenmark und dem Kleinhirn auch weite Teile der Hirnrinde, die als Sitz höherer Hirnfunktionen gilt, größtenteils damit beschäftigt, Bewegungen zu planen und zu kontrollieren.
Bewältigt wird diese Aufgabe in mehreren Schritten – von einem Netzwerk verschiedener Hirnareale mit differierenden Spezialfunktionen, die aber aufs engste zusammenarbeiten: Zunächst wird das Ziel einer motorischen Aktion festgelegt, dann eine Taktik zur optimalen Umsetzung des Ganzen entwickelt. Zuletzt folgt die Ausführung der Bewegung – und wenn etwas nicht so klappt wie gewünscht, senden Boten die schlechten Nachrichten wieder zurück nach oben, wo dann über eine Änderung der Strategie entschieden wird.
Das heißt: Signale und Informationen gehen nicht allein vom motorischen System im Gehirn in Richtung Muskeln, sondern umgekehrt werden von der Körperperipherie auch permanent Meldungen in einer Art Rückkopplungsschleife wieder zurück an die Kommandozentrale geschickt. So geben etwa spezielle Zellen in den Muskeln, den Sehnen und Gelenken, die Propriorezeptoren, dem Gehirn eine Rückmeldung über die Lage des Körpers im Raum, Sinneszellen berichten über die Kraft der jeweiligen Bewegung oder deren Erfolg. Nur so kann das Gehirn die Auswirkungen einer Bewegung wahrnehmen und im Zweifelsfall zu einem modifizierten zweiten Versuch ansetzen. Oder anders formuliert: Sensorische Informationen sind für die Bewegungskontrolle unentbehrlich. Darum müsste man richtigerweise nicht allein vom motorischen, sondern vom sensomotorischen System sprechen.
Damit es aber überhaupt zu diesen Rückmeldungen kommen kann, muss das Gehirn erst einmal eine Bewegung auslösen. Was genau dabei in welcher Reihenfolge passiert, lässt sich gut am Beispiel eines Tennisspielers beim Aufschlag nachvollziehen. Sein Ziel ist immer, den Ball so ins Feld des Gegners zu befördern, dass dieser ihn nicht oder zumindest nicht gut zurückschlagen kann. Dazu stehen mehrere Möglichkeiten zur Auswahl: Der mit Vorwärtsdrall gespielte, hoch abspringende Kick-Aufschlag, der mit Seitenschnitt geschlagene fast wegrutschende Slice-Service oder einfach der gerade und harte Aufschlag. Zudem kann der Aufschläger die Richtung variieren – weit an die Seite, direkt durch die Mitte auf den Körper. Je nachdem, wo sein Gegner seine Stärken und Schwächen hat, und abhängig davon, welchen Spielzug er selbst vorhat – etwa einen Netzangriff – ist mal die eine und mal die andere Variante die bessere Wahl.
Die Festlegung einer Bewegungsstrategie
Bevor der Sportler nun zum vielleicht alles entscheidenden Aufschlag ausholt, die dahinterstehende komplexe Abfolge von Muskelkontraktionen also geplant und in Gang gesetzt werden kann, muss er abwägen, welche Technik er auswählen will. Dazu braucht es Informationen über die Position seines Körpers und die des Gegners, aber auch Daten wie Windstärke und –richtung. Anders formuliert: ein mentales Bild der Situation.
Die dafür notwendigen somatosensorischen, propiozeptiven und visuellen Informationen werden im posterioren Parietalcortex am oberen Hinterkopf verarbeitet. Der Parietalcortex ist eng mit Regionen im anterioren Frontallappen verknüpft, die beim abstraktem Denken, dem Treffen von Entscheidungen und dem Abschätzen der Folgen einer Handlung zentrale Bedeutung besitzen.
Diese präfrontalen Felder sind gemeinsam mit dem posterioren Parietalcortex dafür zuständig, das Ziel einer Bewegung festzulegen und die Strategie zu klären, mit der sich selbiges am besten erreichen lässt. Hier werden Entscheidungen über Handlungsweisen gefällt, also auch über die Art des Aufschlags. Dabei spielen frühere Erfahrungen, die der Tennisspieler etwa im bisherigen Verlauf des Matchs gemacht hat, eine wichtige Rolle. Zum Beispiel, dass die Rückhand des Gegners schwächer ist als die Vorhand. Die strategischen Abwägungen könnten dann so aussehen:
Bewegungsziel 1: Den Gegner mit dem Aufschlag zu einem Fehler oder einem harmlosen Rückschlag zu zwingen, um den Punkt und damit das Match zu gewinnen.Bewegungsziel 2: Selbst keinen Aufschlagfehler machen.Information A: Gegner hat Schwächen bei der Rückhand gezeigt.Information B: Der Kick-Aufschlag ist meine sicherste Variante.Information C: Der Kontrahent steht relativ weit auf seiner Vorhandseite.Ergo, beste Strategie: Ein Kick-Aufschlag auf die Rückhand-Seite, mit sicherem Abstand zur Seitenlinie, um das Risiko eines Aus-Balls zu minimieren.
Empfohlene Artikel
Planung und Initiierung
Sowohl der präfrontale als auch der parietale Cortex senden Axone in das prämotorische und das supplementär-motorische Areal. In diesen beiden zum Motorcortex gehörenden Bereichen der Hirnrinde wird die Entscheidung bis zur Ausführung gespeichert – zum Beispiel, wenn der Aufschläger nicht sofort loslegen kann, weil sein Gegenüber sich die Hände an der Hose abwischt, um einen besseren Halt am Schläger zu haben. Ist klar, dass es nun losgehen kann – eine Information, die über verschiedene weitere Stufen vermittelt wird –, geht es an die Umsetzung der Strategie. Jetzt muss ein Bewegungsplan erstellt werden, in dem festlegt ist, welche Muskeln in welcher Reihenfolge und Intensität angespannt werden sollen.
Die Aufgabe, den räumlich-zeitlichen Ablauf der Muskelkontraktionen so zu organisieren, dass das Bewegungsziel optimal erreicht wird, übernehmen Motorcortex, Basalganglien und Kleinhirn (Cerebellum). Während Frontal– und Parietalcortex also das „Was“ festlegen, bestimmen diese Hirnareale das „Wie“ einer motorischen Handlung. Patienten mit Schädigungen des Kleinhirns machen deutlich, wie wichtig es für unsere motorischen Fähigkeiten ist. Selbst einfache Bewegungsfolgen stellen für diese Menschen eine unlösbare Aufgaben dar, weil sie zum Beispiel beim Greifen eines Glases nicht nacheinander den Arm senken, die Hand öffnen und dann die Finger schließen, sondern die einzelnen Bewegungen ungeordnet ausführen. Auch die Unbeholfenheit Betrunkener hat ihre Ursache vor allem in einer alkoholbedingten Einschränkung der Funktion des Kleinhirns.
Damit der Tennisspieler dann schlussendlich seine Finger fest um den Ball schließt, diesen hochwirft, die Muskeln anspannt und zum Aufschlag ausholt, muss der Bewegungsentwurf zu den Muskeln gelangen. Dies geschieht über Leitungsbahnen, die im primären Motorcortex entspringen, um dann im Rückenmark abwärts zu ziehen. Über sie kommuniziert das Gehirn mit den Motoneuronen des Rückenmarks, die über ihre Axone mit bestimmten Muskeln und Muskelgruppen verbunden sind. Die spinalen Motoneurone lösen über die Aktivierung der Muskelzellen dann die Bewegung aus. Der Tennisspieler schlägt auf, der Gegner schafft einen guten Return – und der Ballwechsel nimmt seinen Lauf.
Cortex
Großhirnrinde/Cortex cerebri/cerebral cortex
Cortex bezeichnet eine Ansammlung von Neuronen, typischerweise in Form einer dünnen Oberfläche. Meist ist allerdings der Cortex cerebri gemeint, die äußerste Schicht des Großhirns. Sie ist 2,5 mm bis 5 mm dick und reich an Nervenzellen. Die Großhirnrinde ist stark gefaltet, vergleichbar einem Taschentuch in einem Becher. So entstehen zahlreiche Windungen (Gyri), Spalten (Fissurae) und Furchen (Sulci). Ausgefaltet beträgt die Oberfläche des Cortex ca 1.800 cm2.
Basalganglien
Basalganglien/Nuclei basales/basal ganglia
Basalganglien sind eine Gruppe subcorticaler Kerne (unterhalb der Großhirnrinde gelegen) im Telencephalon. Zu den Basalganglien zählen der Globus pallidus und das Striatum, und je nach Autor weitere Strukturen, wie z. B. die Substantia nigra und der Nucleus subthalamicus. Die Basalganglien werden primär mit der Willkürmotorik in Verbindung gebracht, beeinflussen aber auch Motivation, Lernen und Emotion.
Cerebellum
Kleinhirn/Cerebellum/cerebellum
Das Cerebellum (Kleinhirn) ist ein wichtiger Teil des Gehirns, an der Hinterseite des Hirnstamms und unterhalb des Okzipitallappens gelegen. Es besteht aus zwei Kleinhirnhemisphären, die vom Kleinhirncortex (Kleinhirnrinde) bedeckt werden und spielt u.a. eine wichtige Rolle bei motorischen Prozessen. Entsteht aus dem Rhombencephalon.
Übung macht den Bewegungs-Meister
Nun gibt es Bewegungen, die sehr grob sind – etwa das Rudern mit den Armen. Andere hingegen, wie das Schreiben mit einem Stift, sind genau abgestimmt und fein moduliert. Die Feinmotorik einer Bewegung hängt unter anderem von der Zahl der unteren Motoneurone im Rückenmark ab: Wenn viele untere Motoneurone für die Bewegung einer Muskelgruppe abgestellt sind, kann diese Bewegung feiner ausgeführt werden. Bestes Beispiel dafür sind die mit zahlreichen kleinen Muskeln und entsprechend vielen dieser lenkenden Motoneuronen ausgestatteten Finger. Wer sich jedoch intensiv mit einer Bewegungsfolge beschäftigt – heißt: viel übt –, kann die Feinabstimmung aber auch beeinflussen: Musiker zum Beispiel können die Motorik ihrer Finger, Hände und Arme besonders gut koordinieren, Sportler wie unser Tennisspieler ihre Kraft.
Studien an Ratten legen nahe, dass diese Fähigkeit zum motorischen Lernen auch auf einer Reorganisation der Neuronennetze im primären Motorcortex beruht: Werden Nervenzellgruppen, die eigentlich für eine Bewegung reserviert waren, wenig genutzt, können sie anscheinend auf die Steuerung anderer Bewegungen umgeschult werden. Diese Eigenschaft macht man sich in der Rehabilitation nach Hirnschäden zu Nutze: Hat ein Patient nach einem Unfall oder Schlaganfall bestimmte motorische Fähigkeiten verloren, kann er sie mit viel Übung und Geduld bis zu einem bestimmten Grad neu erlernen. Für die Betroffenen ein enormer Gewinn an Lebensqualität, auch wenn Tennisspielen dann meist nicht mehr möglich ist.
