Das kleine Einmaleins der Nervenzelle

© MPI für biologische Intelligenz, i.G. / Kuhl
Wissenschaftler*innen zeigen nun, dass Nervenzellen im Fruchtfliegengehirn multiplizieren, indem sie durch den Kehrwert dividieren.

Nervenzellen führen unentwegt komplizierte Berechnungen durch – eine Voraussetzung dafür, dass wir zum Beispiel ein Geräusch im Raum lokalisieren oder die Richtung einer Bewegung abschätzen können. Dazu müssen einzelne Zellen zwei Signale multiplizieren. Wie solch ein Rechenprozess konkret abläuft, war jahrzehntelang ein Rätsel. Eine Studie des Max-Planck-Instituts für biologische Intelligenz, in Gründung (i.G.), hat in der Fruchtfliege die biophysikalische Grundlage entschlüsselt, die es einem Nervenzelltyp ermöglicht zwei Eingangssignale miteinander zu multiplizieren. Dies gibt neue Einblicke in die Rechenleistung einzelner Nervenzellen, die unzähligen Vorgängen im Gehirn zugrunde liegt.

Quelle: Max-Planck-Institut für biologische Intelligenz

Veröffentlicht: 23.02.2022

Wir erkennen problemlos Objekte und die Richtung, in die sie sich bewegen. Diese Information berechnet das Gehirn aus lokalen Änderungen der Lichtintensität auf der Netzhaut unseres Auges. Die zugrundeliegenden Berechnungen laufen auf Ebene einzelner Nervenzellen ab. Doch was bedeutet es, wenn Nervenzellen rechnen? In einem Netzwerk aus verbundenen Nervenzellen muss jede Zelle aus allen Eingangssignalen ein Ausgangssignal berechnen. Dabei gibt es Eingänge, die das Ausgangssignal steigern und solche, die es vermindern – Neurobiologen sprechen von Exzitation und Inhibition.

Modelle nehmen an, dass das Bewegungssehen die Multiplikation zweier Signale erfordert; wie genau solche Rechenoperationen auf Nervenzellebene durchgeführt werden, war bislang jedoch unbekannt. Ein Team aus der Abteilung von Alexander Borst vom Max-Planck-Institut für biologische Intelligenz, i.G., konnte dieses Rätsel nun an einem bestimmten Nervenzelltyp lüften. 

Dazu konzentrierten sich die Wissenschaftler*innen auf sogenannte T4-Zellen im visuellen System der Fruchtfliege. Diese Nervenzellen reagieren ausschließlich auf Bewegung in eine bestimmte Richtung. Den beiden Erstautoren Jonatan Malis und Lukas Groschner gelang es erstmals, sowohl die Eingangs- als auch die Ausgangssignale von T4-Zellen zu messen. Dazu verwendeten die Neurobiologen kleinste Elektroden, mit deren Hilfe sie die elektrische Aktivität im Fliegenhirn aufzeichneten, während sie den Fliegen auf einer Miniaturleinwand visuelle Reize vorspielten. Da T4-Zellen zu den kleinsten Nervenzellen überhaupt zählen, waren die erfolgreichen Messungen ein methodischer Meilenstein. 

Zusammen mit Computersimulationen zeigten die Messungen, dass T4-Zellen in ihrer Aktivität ständig inhibiert, also gehemmt werden. Nur wenn sich der visuelle Reiz in eine bestimmte Richtung bewegt, wird die Hemmung kurzzeitig unterbrochen. Innerhalb dieses Zeitfensters wird ein ankommendes, erregendes Signal verstärkt: Mathematisch betrachtet kommt die ständige Inhibierung einer Division gleich; wird sie vermindert, entspricht das einer Multiplikation.

„Wir haben eine einfache Erklärung für eine komplexe Berechnung in einer einzelnen Nervenzelle gefunden“, erklärt Lukas Groschner. „Die Umkehroperation der Division ist die Multiplikation. Nervenzellen scheinen sich diese Beziehung zunutze zu machen“, fügt Jonatan Malis hinzu.

Die Fähigkeit der T4-Zellen zu multiplizieren ist auf ein bestimmtes Rezeptormolekül auf ihrer Oberfläche zurückzuführen. „Tiere, denen dieser Rezeptor fehlt, nehmen Bewegungen falsch wahr und können in Verhaltensexperimenten ihren Kurs nicht halten“, erklärt Co-Autorin Birte Zuidinga, die das Navigationsverhalten von Fruchtfliegen in einer virtuellen Realität analysierte. Das veranschaulicht, wie wichtig diese Art der Berechnung für das Verhalten der Tiere ist. 

„In der Vergangenheit war unser Verständnis der grundlegenden Algebra von Nervenzellen sehr lückenhaft“, sagt Alexander Borst. „Das vergleichsweise einfache Gehirn der Fruchtfliege hat uns jedoch ermöglicht, Einblicke in ein bisher scheinbar unlösbares Rätsel zu erlangen.“ Die Wissenschaftler*innen vermuten, dass ähnliche neuronale Berechnungen zum Beispiel dem Richtungshören, dem Fokussieren der Aufmerksamkeit und unserem Orientierungsvermögen zugrunde liegen.

Netzhaut

Netzhaut/Retina/retina

Die Netzhaut oder Retina ist die innere mit Pigmentepithel besetzte Augenhaut. Die Retina zeichnet sich durch eine inverse (umgekehrte) Anordnung aus: Licht muss erst mehrere Schichten durchdringen, bevor es auf die Fotorezeptoren (Zapfen und Stäbchen) trifft. Die Signale der Fotorezeptoren werden über den Sehnerv in verarbeitende Areale des Gehirns weitergeleitet. Grund für die inverse Anordnung ist die entwicklungsgeschichtliche Entstehung der Netzhaut, es handelt sich um eine Ausstülpung des Gehirns.
Die Netzhaut ist ca 0,2 bis 0,5 mm dick.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Hemmung

Hemmung/-/inhibition

Die neuronale Inhibition, oder auch Hemmung umschreibt das Phänomen, dass ein Senderneuron einen Impuls zum Empfängerneuron sendet, der bei diesem dazu führt, dass seine Aktivität herabgesetzt wird. Der wichtigste hemmende Botenstoff ist GABA.

Hemmung

Hemmung/-/inhibition

Die neuronale Inhibition, oder auch Hemmung umschreibt das Phänomen, dass ein Senderneuron einen Impuls zum Empfängerneuron sendet, der bei diesem dazu führt, dass seine Aktivität herabgesetzt wird. Der wichtigste hemmende Botenstoff ist GABA.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Rezeptor

Rezeptor/-/receptor

Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.

Aufmerksamkeit

Aufmerksamkeit/-/attention

Aufmerksamkeit dient uns als Werkzeug, innere und äußere Reize bewusst wahrzunehmen. Dies gelingt uns, indem wir unsere mentalen Ressourcen auf eine begrenzte Anzahl von Bewusstseinsinhalten konzentrieren. Während manche Stimuli automatisch unsere Aufmerksamkeit auf sich ziehen, können wir andere kontrolliert auswählen. Unbewusst verarbeitet das Gehirn immer auch Reize, die gerade nicht im Zentrum unserer Aufmerksamkeit stehen.

Originalpublikation

Lukas N. Groschner, Jonatan G. Malis, Birte Zuidinga & Alexander Borst;
A biophysical account of multiplication by a single neuron;
Nature, online 23.02.2022; DOI: 10.1038/s41586-022-04428-3

1 votes with an average rating of 5.

Lizenzbestimmungen

Keine Nutzungslizenz vergeben:
Nur anschauen erlaubt.