Wie eine Nervenzelle im Gehirn überleben kann

© Bergami Labor
Das Bild zeigt neue Neuronen (magenta) im Hippocampus einer erwachsenen Maus. Zellkerne sind cyan gefärbt. Die langen Dendriten sind der wichtige Orte, an denen Mechanismen der Plastizität und des Wettbewerbs um das Zellüberleben stattfinden.

Wissenschaftler*innen der Universität zu Köln haben entdeckt, wie Mitochondrien die Zellerneuerung und die neuronale Plastizität im Gehirn der erwachsenen Maus steuern / Veröffentlichung in „Neuron“

Source: Cluster of Excellence at the University of Cologne

Published: 05.04.2024

Nervenzellen im Gehirn (Neuronen) gehören zu den komplexesten Zelltypen in unserem Körper. Grund dafür sind die verzweigten Fortsätze, die sogenannten Dendriten und Axone, und Tausende von Synapsen, die komplexe Netzwerke bilden. Zwar werden die meisten Neuronen während der Embryonalentwicklung gebildet, aber in bestimmten Regionen des Gehirns findet während des gesamten Erwachsenenalters Neurogenese, die Bildung von Nervenzellen, statt. Noch ist unklar, wie diese neu entstandenen Zellen erfolgreich reifen und überleben, um ihre Funktionen innerhalb eines vollständig gebildeten Organs auszuüben. Das Verständnis dieser Prozesse birgt jedoch ein großes Potenzial für regenerative Ansätze bei Erkrankungen. 

Die Forschungsgruppe um Professor Dr. Matteo Bergami vom Exzellenzcluster für Alternsforschung CECAD an der Universität zu Köln untersuchte diese Prozesse anhand von Mausmodellen mithilfe von Bildgebung, Signalverfolgung mit Viren, und elektrophysiologischen Techniken. Sie fanden heraus, dass bei der Reifung neuer Neuronen die Mitochondrien (die Kraftwerke der Zellen) entlang der Dendriten sich zunehmend durch Fusion verbinden und dadurch länglichere Formen bilden. Dieser Prozess ist entscheidend für die Aufrechterhaltung der Plastizität neuer Synapsen und die Anpassung bereits bestehender neuronaler Netze als Reaktion auf komplexe Erfahrungen. Die Studie „Enhanced mitochondrial Fusion during a critical period of synaptic Plasticity in adult-born Neurons“ wurde in Neuron veröffentlicht.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Mitochondrien

Mitochondrien/-/mitochondria

Mitochondrien sind Organellen im Inneren einer Zelle, sie werden auch als „Kraftwerk“ der Zellen bezeichnet, da sie diese mit Energie versorgen. Sie haben eine eigene DNA, die nur über die Mutter vererbt wird.

Plastizität

Plastizität/-/neuroplasticity

Der Begriff beschreibt die Fähigkeit von Synapsen, Nervenzellen und ganzen Hirnarealen, sich abhängig vom Grad ihrer Nutzung zu verändern. Mit synaptischer Plastizität ist die Eigenschaft von Synapsen gemeint, ihre Erregbarkeit auf die Intensität der Reize einzustellen, die sie erreichen. Daneben unterliegen auch Größe und Vernetzungsgrad unterschiedlicher Hirnbereiche einem Wandel, der von ihrer jeweiligen Aktivität abhängt. Dieses Phänomen bezeichnen Neurowissenschaftler als corticale Plastizität.

Synapse

Synapse/-/synapse

Eine Synapse ist eine Verbindung zwischen zwei Neuronen und dient deren Kommunikation. Sie besteht aus einem präsynaptischen Bereich – dem Endknöpfchen des Senderneurons – und einem postsynaptischen Bereich – dem Bereich des Empfängerneurons mit seinen Rezeptoren. Dazwischen liegt der sogenannte synaptische Spalt.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Die mitochondriale Fusion sichert das Überleben neuer Neuronen

Die adulte Neurogenese findet im Hippocampus statt, die Region des Gehirns, die kognitive und emotionale Prozesse steuert. Es konnte bestätigt werden, dass Veränderungen der Neurogenese im Hippocampus mit neurodegenerativen und depressiven Störungen korrelieren. Obwohl bekannt ist, dass die neu produzierten Neuronen dort über längere Zeiträume reifen, um eine hohe Plastizität zu gewährleisten, ist unser Verständnis der zugrunde liegenden Mechanismen begrenzt. Die Ergebnisse von Bergami und seinem Team deuten darauf hin, dass das Tempo der mitochondrialen Fusion in den Dendriten die neuronale Plastizität der neuen Nervenzellen steuert, nicht aber deren Reifung an sich. 

„Wir waren überrascht, dass sich neue Neuronen ohne mitochondriale Fusion fast perfekt entwickeln, aber ihre Überlebensrate plötzlich abnahm, obwohl es keine offensichtlichen Anzeichen für eine Degeneration gab“, sagt Bergami. „Dies lässt vermuten, dass die Fusion eine wichtige Rolle bei der Regulierung neuer Neuronen an den Synapsen als Teil eines Selektionsprozesses spielt, den neue Neuronen bei ihrer Integration in das Netzwerk durchlaufen.“ 

Die Ergebnisse erweitern das Wissen, dass mitochondriale Dysfunktionen (z.B. während der Fusion) neurologische Störungen beim Menschen verursachen. Zudem deuten sie darauf hin, dass die Fusion eine viel komplexere Rolle als bisher angenommen bei der Kontrolle der synaptischen Funktion und ihrer Fehlfunktion bei Krankheiten wie Alzheimer und Parkinson spielen kann. 

Abgesehen davon, dass sie einen grundlegenden Aspekt der neuronalen Plastizität unter physiologischen Bedingungen aufdecken konnten, hoffen die Wissenschaftler*innen, dass diese Ergebnisse hilfreich für die Entwicklung spezifischer Behandlungsmethoden zur Wiederherstellung der neuronalen Plastizität und der kognitiven Funktionen bei Krankheiten sein werden.

Hippocampus

Hippocampus/Hippocampus/hippocampual formatio

Der Hippocampus ist der größte Teil des Archicortex und ein Areal im Temporallappen. Er ist zudem ein wichtiger Teil des limbischen Systems. Funktional ist er an Gedächtnisprozessen, aber auch an räumlicher Orientierung beteiligt. Er umfasst das Subiculum, den Gyrus dentatus und das Ammonshorn mit seinen vier Feldern CA1-​CA4.

Veränderungen in der Struktur des Hippocampus durch Stress werden mit Schmerzchronifizierung in Zusammenhang gebracht. Der Hippocampus spielt auch eine wichtige Rolle bei der Verstärkung von Schmerz durch Angst.

Neurodegeneration

Neurodegeneration/-/neurodegeneration

Sammelbegriff für Krankheiten, in deren Verlauf Nervenzellen sukzessive ihre Struktur oder Funktion verlieren, bis sie teilweise sogar daran zugrunde gehen. Vielfach sind falsch gefaltete Proteine der Auslöser – wie etwa bestimmte Formen der Eiweiße Beta-​Amyloid und Tau im Falle von Alzheimer. Bei anderen Krankheiten, beispielsweise bei Parkinson oder Chorea Huntington, werden Proteine innerhalb der Neurone nicht richtig abgebaut. In der Folge lagern sich dort toxische Aggregate ab, was zu den jeweiligen Krankheitserscheinungen führt. Während Chorea Huntington eindeutig genetisch bedingt ist, scheint es bei Parkinson und Alzheimer allenfalls bestimmte Ausprägungsformen von Genen zu geben, welche ihre Entstehung begünstigen. Keine dieser neurodegenerativen Erkrankungen kann bisher geheilt werden.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Plastizität

Plastizität/-/neuroplasticity

Der Begriff beschreibt die Fähigkeit von Synapsen, Nervenzellen und ganzen Hirnarealen, sich abhängig vom Grad ihrer Nutzung zu verändern. Mit synaptischer Plastizität ist die Eigenschaft von Synapsen gemeint, ihre Erregbarkeit auf die Intensität der Reize einzustellen, die sie erreichen. Daneben unterliegen auch Größe und Vernetzungsgrad unterschiedlicher Hirnbereiche einem Wandel, der von ihrer jeweiligen Aktivität abhängt. Dieses Phänomen bezeichnen Neurowissenschaftler als corticale Plastizität.

Neuron

Neuron/-/neuron

Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.

Synapse

Synapse/-/synapse

Eine Synapse ist eine Verbindung zwischen zwei Neuronen und dient deren Kommunikation. Sie besteht aus einem präsynaptischen Bereich – dem Endknöpfchen des Senderneurons – und einem postsynaptischen Bereich – dem Bereich des Empfängerneurons mit seinen Rezeptoren. Dazwischen liegt der sogenannte synaptische Spalt.

Originalpublikation

Sandra M.V. Kochan, Meret Cepero Malo, Milica Jevtic, Dieter Chichung Lie, Astrid Schauss, Matteo Bergami; Enhanced mitochondrial fusion during a critical period of synaptic plasticity in adult-born neurons; Open Access, April 05, 2024
DOI: https://doi.org/10.1016/j.neuron.2024.03.013

No votes have been submitted yet.

License Terms

This content is available under the following conditions of use.

BY-NC-SA: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen