Vergleichbarkeit verschiedener Hirnsignale

Probandin bei der MEG-Messung, © Berthold Steinhilber
HIH Vergleichbarkeit Hirnsignale

Äußerliche Messungen am Kopf lassen Schlüsse auf die zugrundeliegende Nervenzellaktivität zu

Source: Hertie Institute für klinische Hirnforschung

Published: 07.08.2019

Eine neue Studie von Tübinger Wissenschaftlern zeigt, dass sich Messergebnisse verschiedener gängiger Methoden zur Bestimmung der Hirnaktivität weitgehend in direkten Zusammenhang bringen lassen. Zwei davon – die Elektroenzephalografie (EEG) und die Magnetoenzephalographie (MEG) – sind nicht-invasive Verfahren, bei denen die Hirntätigkeit an der Kopfoberfläche gemessen wird und kein operativer Eingriff notwendig ist. Die dritte Methode ist die invasive Elektrophysiologie, bei der Mikroelektroden die Aktivität einzelner bis tausender Nervenzellen direkt im Gewebe aufnehmen. Forscher um Professor Markus Siegel am Hertie-Institut für klinische Hirnforschung und der Universität Tübingen setzten gemeinsam mit Kollegen vom Massachusetts Institute of Technology (USA) nun alle drei Verfahren parallel in einem Sehexperiment ein. Sie wiesen nach, dass EEG, MEG und invasive Elektrophysiologie bei der Verarbeitung eines Sehreizes sehr ähnliche Informationen erfassen, wie etwa die Farbe und Bewegungsrichtung von Punkten. Erkenntnisse aus invasiven und nicht-invasiven Experimenten lassen sich somit künftig besser in Zusammenhang bringen. 

„Im weiteren Sinne kann nun auch die Forschung an menschlichen Probanden besser mit Untersuchungen an Versuchstieren verglichen werden“, sagt Studienleiter Siegel. Um die Funktionsweise des Gehirns auf der Ebene einzelner Nervenzellen untersuchen zu können, müssen Hirnforscher auf Untersuchungen an Versuchstieren zurückgreifen. EEG und MEG werden wiederum bevorzugt an menschlichen Versuchspersonen eingesetzt, etwa in der klinischen Hirnforschung. 

„Es ist jedoch nicht ganz einfach, EEG- und MEG-Daten mit den zugrundeliegenden neuronalen Schaltkreisen in Beziehung zu setzen“, berichtet Florian Sandhäger, Mitarbeiter von Siegel und Erstautor der Studie. Beide Verfahren messen großflächige elektrische sowie magnetische Felder, die aufgrund der Hirnaktivität entstehen, an der Kopfoberfläche. Mit ihrer Hilfe lassen sich die örtlichen Quellen der Signale bestimmen, nicht jedoch die Aktivität einzelner Zellen. Diese können nur mithilfe der invasiven Elektrophysiologie geklärt werden. Die hauchdünnen Mikroelektroden messen die Nervenzellaktivität direkt am Ort des Geschehens im Gehirn und bieten so eine sehr hohe räumliche Auflösung. 

Ziel von Siegel und seinen Mitarbeitern war es, die außerhalb des Kopfs gemessenen elektrischen und magnetischen Felder mit der konkreten Nervenzellaktivität in Verbindung zu bringen. Dafür entwickelten sie ein Experiment, bei dem verschiedenfarbige Punktmuster auf einem Bildschirm gezeigt wurden, die sich in unterschiedlichen Richtungen bewegten. Zunächst untersuchten die Wissenschaftler die Hirnaktivität menschlicher Versuchspersonen beim Betrachten dieser Muster. Dafür verwendeten sie das MEG. Parallel dazu entwickelten sie ein spezielles EEG, mit dem sie die vergleichbare Hirnaktivität während der Aufgabe an Rhesusaffen messen konnten. In einem dritten Schritt führten sie mit den Tieren das Sehexperiment durch, während sie dabei die Nervenzellaktivität mittels Mikroelektroden maßen.

Das Ergebnis: Die gemessenen Signale enthielten bei allen drei Verfahren Informationen über Farbe und Bewegungsrichtung der Punktmuster. Darüber hinaus identifizierten die Wissenschaftler spezifische Muster im MEG und EEG, die sie in Bezug zu den Eigenschaften einzelner Nervenzellen in bestimmten Hirnarealen setzen konnten. „Unsere Studie hilft, nicht-invasive Messverfahren in engen Bezug zu den unterliegenden zellulären Mechanismen zu setzen“, erläutern Siegel und Sandhäger. „Dieser Brückenschlag trägt nicht nur zu einem besseren Verständnis der Funktionsweise des menschlichen Gehirns bei, sondern kann langfristig auch eine genauere Interpretation von EEG- und MEG-Messungen im klinischen Kontext ermöglichen.“ Die aktuelle Studie ist in der Fachzeitschrift eLife erschienen.

Originalpublikation

Sandhaeger et al. (2019): Monkey EEG links neuronal color and motion information across species and scales, eLife, 8: e45645. 
doi.org/10.7554/eLife.45645

EEG

Elektroencephalogramm/-/electroencephalography

Bei dem Elektroencephalogramm, kurz EEG handelt es sich um eine Aufzeichnung der elektrischen Aktivität des Gehirns (Hirnströme). Die Hirnströme werden an der Kopfoberfläche oder mittels implantierter Elektroden im Gehirn selbst gemessen. Die Zeitauflösung liegt im Millisekundenbereich, die räumliche Auflösung ist hingegen sehr schlecht. Entdecker der elektrischen Hirnwellen bzw. des EEG ist der Neurologe Hans Berger (1873−1941) aus Jena.

No votes have been submitted yet.

Tags

License Terms

This content is available under the following conditions of use.

BY-NC-SA: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen